Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add filters

Language
Document Type
Year range
3.
medrxiv; 2022.
Preprint in English | medRxiv | ID: ppzbmed-10.1101.2022.02.09.22270734

ABSTRACT

Background: To partially immunize more persons against COVID-19 during a time of limited vaccine availability, Canadian public health officials recommended extending the vaccine dose interval and brand mixing. Impact on the antibody response among the older ambulatory population was unclear. Methods: Decentralized prospective cohort study with self-report of adverse events and collection of dried blood spots. Data is presented for 1193 (93%) of the 911 older (aged >70 years) and 375 younger (30-50 years) recruits. Findings: Local and systemic reactivity rates were high but short-lived, particularly in the younger cohort and with mRNA-1273 vaccine. After a single COVID-19 vaccine, 84% younger but only 46% older participants had positive IgG antibodies to both spike protein and receptor binding domain (RBD) antigens, increasing to 100/98% with the second dose respectively. In multivariable linear regression model, lower normalized IgG RBD antibody ratios two weeks after the second dose were statistically associated with older age, male gender, cancer diagnosis, lower body weight, BNT162b2 relative to mRNA-1273 and longer dose intervals. Antibody ratios in both cohorts declined 12 weeks post second vaccine dose. Interpretation: We report success of a decentralized serology study. Antibody responses were higher in the younger than older cohort and were greater for those with at least one mRNA-1273 dose. The immunity threshold is unknown but correlations between binding and neutralizing antibodies are strongly positive. Trends with time and at breakthrough infection will inform vaccine booster strategies. Funding: Supported by the Public Health Agency of Canada and the University Health Network Foundation.


Subject(s)
COVID-19 , Neoplasms
4.
biorxiv; 2022.
Preprint in English | bioRxiv | ID: ppzbmed-10.1101.2022.01.13.475409

ABSTRACT

The omicron variant of concern (VOC) of SARS-CoV-2 was first reported in November 2021 in Botswana and South Africa. Omicron variant has evolved multiple mutations within the spike protein and the receptor binding domain (RBD), raising concerns of increased antibody evasion. Here, we isolated infectious omicron from a clinical specimen obtained in Canada. The neutralizing activity of sera from 65 coronavirus disease (COVID-19) vaccine recipients and convalescent individuals against clinical isolates of ancestral SARS-CoV-2, beta, delta, and omicron VOCs was assessed. Convalescent sera from unvaccinated individuals infected by the ancestral virus during the first wave of COVID-19 in Canada (July, 2020) demonstrated reduced neutralization against beta, delta and omicron VOCs. Convalescent sera from unvaccinated individuals infected by the delta variant (May-June, 2021) neutralized omicron to significantly lower levels compared to the delta variant. Sera from individuals that received three doses of the Pfizer or Moderna vaccines demonstrated reduced neutralization of both delta and omicron variants relative to ancestral SARS-CoV-2. Sera from individuals that were naturally infected with ancestral SARS-CoV-2 and subsequently received two doses of the Pfizer vaccine induced significantly higher neutralizing antibody levels against ancestral virus and all VOCs. Importantly, infection alone, either with ancestral SARS-CoV-2 or the delta variant was not sufficient to induce high neutralizing antibody titers against omicron. This data will inform current booster vaccination strategies and we highlight the need for additional studies to identify longevity of immunity against SARS-CoV-2 and optimal neutralizing antibody levels that are necessary to prevent infection and/or severe COVID-19.


Subject(s)
Coronavirus Infections , COVID-19
5.
researchsquare; 2020.
Preprint in English | PREPRINT-RESEARCHSQUARE | ID: ppzbmed-10.21203.rs.3.rs-56125.v1

ABSTRACT

Background: Post-exposure prophylaxis (PEP) is a well-established strategy for the prevention of infectious diseases, in which recently exposed people take a short course of medication to prevent infection. The primary objective of the COVID-19 Ring-based Prevention Trial with lopinavir/ritonavir (CORIPREV-LR) is to evaluate the efficacy of a 14-day course of oral lopinavir/ritonavir as PEP against COVID-19 among individuals with a high-risk exposure to a confirmed case. Methods: : This is an open-label, multicenter, 1:1 cluster-randomized trial of LPV/r versus no intervention, using an adaptive approach to sample size calculation. Participants will be individuals aged >6 months with a high-risk exposure to a confirmed COVID-19 case within the past 7 days. A combination of remote and in-person study visits at days 1, 7, 14, 35 and 90 include comprehensive epidemiological, clinical, microbiologic and serologic sampling. The primary outcome is microbiologically confirmed COVID-19 infection within 14 days after exposure, defined as a positive respiratory tract specimen for SARS-CoV-2 by polymerase chain reaction. Secondary outcomes include safety, symptomatic COVID-19, seropositivity, hospitalization, respiratory failure requiring ventilator support, mortality, psychological impact, and health-related quality of life. Additional analyses will examine the impact of LPV/r on these outcomes in the subset of participants who test positive for SARS-CoV-2 at baseline. To detect a relative risk reduction of 40% with 80% power at α=0.05, assuming p 0 =15%, 5 contacts per case and intra-class correlation coefficient (ICC)=0.05, we require 110 clusters per arm, or 220 clusters overall and approximately 1220 enrollees after accounting for 10% loss-to-follow-up. We will modify the sample size target after 60 clusters, based on preliminary estimates of p0, ICC and cluster size and consider switching to an alternative drug after interim analyses and as new data emerges. The primary analysis will be a generalized linear mixed model with logit link to estimate the effect of LPV/r on the probability of infection. Discussion: Harnessing safe, existing drugs such as LPV/r as PEP could provide an important tool for control of the COVID-19 pandemic. Novel aspects of our design include the ring-based prevention approach, and the incorporation of remote strategies for conducting study visits and biospecimen collection. Trial registration: This trial was registered at www.clinicaltrials.gov (NCT04321174) on March 25, 2020. https://clinicaltrials.gov/ct2/show/NCT04321174


Subject(s)
COVID-19 , Respiratory Insufficiency , Communicable Diseases
SELECTION OF CITATIONS
SEARCH DETAIL